Probabilistic Parsing in Action Recognition
نویسندگان
چکیده
This report addresses the problem of using probabilistic formal languages to describe and understand actions with explicit structure. The paper explores a probabilistic mechanisms of parsing the uncertain input string aided by a stochastic context-free grammar. This method, originating in speech recognition, allows for combination of a statistical recognition approach with a syntactical one in a unified syntactic-semantic framework for action recognition. The basic approach is to design the recognition system in a two-level architecture. The first level, a set of independently trained component event detectors, produces the likelihoods of each component model. The outputs of these detectors provide the input stream for a stochastic context-free parsing mechanism. Any decisions about supposed structure of the input are deferred to the parser, which attempts to combine the maximum amount of the candidate events into a most likely sequence according to a given Stochastic ContextFree Grammar (SCFG). The grammar and parser enforce longer range temporal constraints, disambiguate or correct uncertain or mis-labeled low level detections, and allow the inclusion of a priori knowledge about the structure of temporal events in a given domain. The method takes into consideration the continuous character of the input and performs “structural rectification” of it in order to account for misalignments and ungrammatical symbols in the stream. The presented technique of such a rectification uses the structure probability maximization to drive the segmentation.
منابع مشابه
Semi - Probabilistic Automata
Observing the environment and recoganizing patterns for the purpose of decision making are fundamental to any scientific enquiry. Pattern recognition is a scientific discipline so much so that it enables perception in machines and also it has applications in diverse technology areas. Among the scientific community, statistical pattern recognition has received considerable attention in recent ye...
متن کاملLexical Ambiguity and its Impact on Plan Recognition for Intrusion Detection
Viewing intrusion detection as a problem of plan recognition presents unique problems. Real world security domains are highly ambiguous and this creates significant problems for plan recognition. This paper distinguishes three sources of ambiguity: action ambiguity, syntactic ambiguity and attachment ambiguity. Previous work in plan recognition has often conflated these different sources of amb...
متن کاملProbabilistic top-down parsing and language modeling
This paper describes the functioning of a broad-coverage probabilistic top-down parser, and its application to the problem of language modeling for speech recognition. The paper first introduces key notions in language modeling and probabilistic parsing, and briefly reviews some previous approaches to using syntactic structure for language modeling. A lexicalized probabilistic topdown parser is...
متن کاملGLR Parser with Conditional Action Model(CAM)
There are two different approaches in the LR parsing. The first one is the deterministic approach that performs the only one action using the control rules learned without any LR parsing resource. It shows good performance in speed. But it has a disadvantage that it cannot correct the previous mistakes, thus directly affects the parsing result. The second one is the probabilistic LR parsing app...
متن کاملProbabilistic Parsing Action Models for Multi-Lingual Dependency Parsing
Deterministic dependency parsers use parsing actions to construct dependencies. These parsers do not compute the probability of the whole dependency tree. They only determine parsing actions stepwisely by a trained classifier. To globally model parsing actions of all steps that are taken on the input sentence, we propose two kinds of probabilistic parsing action models that can compute the prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998